Jump to content

Validation of a two-dimensional gas chromatography mass spectrometry method for the simultaneous quantification of cannabidiol


Recommended Posts

Validation of a two-dimensional gas chromatography mass spectrometry method for the simultaneous quantification of cannabidiol, Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC in plasma

Summary of this paper

Our Machine-Learning algorithms scan the text for the most important phrases or passages. These highlights, alongside their respective section titles, are shown below.

Introduction

Cannabis sativa contains over sixty cannabinoids, including cannabidiol (CBD) and Δ 9tetrahydrocannabinol (THC). Although THC is the principal euphoric chemical in cannabis, its therapeutic properties include analgesia, muscle relaxation, anti-emesis, and appetite stimulation. CBD, a non-psychoactive cannabinoid, is an analgesic, anti-convulsant, anxiolytic, anti-oxidant, anti-psychotic, and muscle relaxant [1].

Go To Passage 

Calibrators, Quality Control Samples And Internal Standards

Individual stock solutions (1 mg/mL) were diluted in methanol and combined to prepare an intermediate calibration standard (10 μg/mL) containing CBD, THC, 11-OH-THC and THCCOOH. Methanolic working calibrator solutions at 10, 100 and 1000 ng/mL were prepared by dilution of the 10 μg/mL intermediate cannabinoid standard. Daily calibration curves were prepared by fortifying 1.0 mL blank plasma with appropriate amounts of working calibrator solution.

Go To Passage 

Two-Dimensional Gas Chromatography Mass Spectrometry

Derivatized extracts (4 μL) were injected in splitless injection mode. Analyte retention times on the primary column were determined by injecting a neat derivatized high concentration cannabinoid standard containing CBD, THC, 11-OH-THC and THCCOOH with column effluent directed to a flame ionization detector (FID). Heart cuts (0.4-0.6 min) containing each analyte peak were made, diverting flow to the secondary column.

Go To Passage 

Data Analysis

Data were analyzed with Agilent Chemstation software version D.01.00. Analytes were identified by comparing retention times (± 0.15 minutes) and qualifier ion ratios (± 20%) to average calibrator values obtained in the same run. Quantification was determined by the ratio of target analyte peak area to corresponding internal standard peak area.

Go To Passage 

Method Validation

Extraction efficiency for each analyte was assessed in fortified blank plasma (n = 4) at each QC concentration (0.35, 7.5, 20, and 75 ng/mL). Extraction efficiency was calculated by comparing mean target ion peak areas in samples fortified prior to extraction with samples fortified after extraction, but before evaporation.

Go To Passage 

Method Development

Although CBD and THC elute from the secondary column less than one minute apart, a single MS acquisition window was created for CBD and THC ions to manage potential retention time shifts. Also, a new oven temperature ramp was developed for extended retention of analytes on the secondary column to minimize retention time drift (Table 1). Complex oven temperature parameters were required for CBD and THC resolution.

Go To Passage 

Method Validation

Imprecision and bias were determined at 0.35, 7.5, 20 ng/mL for all analytes and additionally at 75 ng/mL for THC, 11-OH-THC and THCCOOH. Inter-and intra-assay imprecision (%CV) were <7.8 and <6.4% for all analytes, respectively ( Table 3). The method was highly reproducible and QC samples quantified within ± 9.2% of target.

Go To Passage 

Proof Of Method

This validated analytical method was applied to a plasma specimen from a participant enrolled in a controlled CBD and THC administration protocol. The plasma specimen contained 1.1 ng/mL CBD, 3.4 ng/mL THC, 3.6 ng/mL 11-OH-THC and 49.4 ng/mL THCCOOH. Extracted ion chromatograms are shown in Figure 1.

Go To Passage 

Discussion

This complex instrumental method should be applicable to multiple biological matrices, following matrix validation, and should be highly useful for clinical research, forensic toxicology, workplace drug testing, and DUID programs. Extracted ion chromatograms from a) blank extracted plasma, b) blank plasma fortified with analytes at the limits of quantification-0.25 ng/mL cannabidiol (CBD), Δ 9tetrahydrocannabinol (THC), 11-nor-9-carboxy-THC (THCCOOH) and 0.125 ng/mL 11hydroxy-THC (11-OH-THC), and c) extracted participant specimen from Sativex ® administration a . Arrows indicate retention times of analytes.

Go To Passage 

Analyte Target (Ng/Ml)

Intra-assay Imprecision (%CV; n = 5) Bias (% target; n =20) Table 4 Analyte stability (n = 3) & mean extraction efficiencies (n = 4) for cannabidiol (CBD), Δ 9 -tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) in plasma.

Go To Passage 

The post Validation of a two-dimensional gas chromatography mass spectrometry method for the simultaneous quantification of cannabidiol appeared first on Komorn Law.

View the full article

Link to comment
Share on other sites

Guest
This topic is now closed to further replies.
×
×
  • Create New...